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A NEW SOLUTION FOR MECHANISMS INCLUDING COULOMB
FRICTION
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This paper presents a new solution method for the analysis of multibody systems with Coulomb friction. Complete equations of
motion and reaction forces are derived by using Lagrangian formulation and the traditional friction circle concepts for the analysis
of Coulomb friction. The numerical solutions by the new method, as well as the conventional method for comparision, are
illustrated. The new method saves considerably the computer execution time to solve equations of motion and reaction forces
compared with the conventional method for same accuracy. The higher the coefficient of friction is, the more the computation time
of the conventional method is needed but the computation time of the new method is nearly independent on the coefficient of

friction.
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1. INTRODUCTION

Machines are composed of many components and several
complex mechanisms. These multibody systems consist of
rigid bodies interconnected by springs, dashpots. ser-
vomotors, bearings and several joints. Hence, bodies of
machines do not move independently and have kinematic
constraints. Forces and torques induced by friction act on
these mechanical joints and they depend not only on the
motions of the system but also on the constraint or reaction
forces in the system. For the dynamical analysis of ma-
chines and mechanisms, the mechanical constraints or
joints of multibody systems are often modeled as ideal
ones without any friction for simplicity of analysis and its
computation. However, the increasing demands on higher
precision and speed of machines require an improved analysis
of their dynamical behaviours and this means also an
increasing accuracy of their mechanical models including
the effects of friction in complex multibody systems. As for
associated works, there are(Imam, 1981) treating the
traditional friction circle concepts and (Haug, 1986 ; Schieh-
len, 1983 ; Wu, 1986) using the Lagrange multiplier method
and(Rooney, 1982 ; Tomlinson, 1979) discussing Coulomb
friction in general. An additional detailed refences are given
in (Imam, 1981) and (ed. Haug, 1984).

This paper presents a new solution method for the analysis
of multibody systems with Coulomb friction. Complete equa-
tions of motion and reaction forces are derived by using
Lagrangian formulation and the traditional friction circle
concepts for the analysis of Coulomb friction. Computation
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time and accuracy of the new method are investigated and
the numerical solutions by the new method, as well as the
conventional method for comparision, are illustrated by its
applications to slider-crank mechanism.

2. EQUATIONS OF MOTION WITH
COULOMB FRICTION

In either spatial or planar system dynamics, a set of gener-
alized coordinates of position and orientation is defined as

a=[a1az,qn]" 9]

for »n degrees of freedom system.

For planar system dynamics, the vector ¢ is partitioned
into subvectors of three generalized coordinates that locate
and orient each body in the plane. In the case of spatial
motion, ¢ is partitioned into subvectors of six or seven
generalized coordinates (using Euler parameters) that locate
and orient each body in space.

Physical joints such as spherical joint, revolute joint and
translational joint, etc are defined by a set of algebraic
constraint equations of the form,

#(q,t)=[d1(q,t),8:(q,t), . ds(q,)]T=0 (2)

if there are s constraints. Where ¢ is time.

Since Eq. (2) must hold throughout an entire interva! of
time and the generalized coordinate vector ¢ is a function of
time, the chain rule of differentiation may be used to differen-
tiate Eq. (2) to obtain the velocity and acceleration equa-
tions.

Pog =~ s 3)
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¢q(.1.:*[(¢qq')vq. +2¢uqg +¢t:]57 4)

Where subscript denotes partial diffentiation and ¢, = d¢./dg.
is a (s X n)matrix.

Equations (2) ~ (4) comprise the system of kinematic equa-
tions for the mechanical system. The equations of motion
of the system may be written using either a Lagrangian or
Newton-Euler formulation, with Lagrange multipliers A to
account for constraints, in the form

MG+ oA=Q+ Q* (5)

Where M is the mass matrix, A the vector of Lagrange
multipliers, Q¢ the vector of generalized forces, and Q* is a
vector of quadrztic terms in velocities whose coefficients are
dependent on the generalized coordinates. Egs. (2) and (5)
comprise a mixed system of differential and algebraic equa-
tions that govern dynamics of the system. Combining Egs. (4)
and (5), a set of matrix equations is obtained that determines
accelerations and Lagrange multipliers.

(Mo _[@ Q]

b 0 12 y (6)

If the generalized coordinate vector q is divided into two
parts of position and orientation components, then

§=0r" &)

¢q:[¢r (;z’w] (7
S

Where #, ¢, and m are the components corresponding to
position generalized coordinates and @’,¢. and /' are the
components corresponding to orientation generalized coordi-
nates.

In a similar manner, Q¢+ Q* can be partitioned into two
parts of external force terms F, and torque terms »n’-
@Jw e

Q+Q*={F(w~a&] )} (8)

Where F, is the total force vector, »’ is the moment vector of
external force with respect to the origin of the body fixed
reference frame, J’ is the inertia matrix in the body fixed
reference frame and @’ is the skew—symmetric matrix of
angular velocity vector o'

Inserting Eqgs. (7), (8) into Eq. (6), one obtains

m 0 @ ¥ Fy
0 f, ¢;r'7 @'t = n’—a?']'(u’ (9)
¢r ¢x 0 A 4

The Lagrange multipliers A in Eq.(9) determine the reac-
tion forces in the kinematic constraints of the system. Joint
reaction force can be derived as a function of A

If the translational motion occurs, the frictional force F, by
the joint reaction force can be also expressed as a function of
Lagrange multipliers A, F,(A) and if the motion is rotation as
in the cases of revolute and spherical joints, the frictional
torque 7, induced by Coulomb friction can be obtained as
TA(A).

The frictional force F, and the frictional torque 7, may be

inserted in Eq. (9) as additional force and moment to obtain.

m 0 ¢l ¥ Fr+FA3)
0 7 ¢ @t = w—@ @+ THA) (10)
$r ¢z 0 A y

This is the conventionally known mixed system of
differential-algebraic equations of motion of multi-body
system with Coulomb friction and is used to solve #,¢’, and
A. Note that the Lagrange multipliers A appear on both left
and right-hand sides of Eq. (10). Recalling that A determine
the magnitude of reaction forces in the joints, one may infer
that the frictional forces and torques influence reaction
forces and torques reversely.

In the following, F, and 7, of Eq. (10) are derived explicit-
ly for two basic joints, revolute and translational, and they
are expressed in convenient forms for application to the new
solution method.

2.1 Revolute Joint

Figure 1 shows a member 7 connected to a member ; by a
revolute joint with radius R. Members ; and ; have the
angular velocities w; and @, respectively as shown. The
reaction force - F of member ; on member ; acts at the point
of contact P. This force has a component N normal to the
two surfaces and a second component F, tangent to the
surfaces developed by the Coulomb sliding where F,=uN
and g =tan(¢) is the coefficient of friction. Fy and F, are the
x and y-directional components of the reaction force F and
each of them is an element of Lagrange multipliers A.

The reaction force -F produces a friction torque T,(A)
about the center of the revolute joint which acts on member
i in counter-clockwise direction.

Ty= —sign(w; — w;) FRsin(¢)
= —»‘/—i—ﬁ;——?Rsign(wi —wiWFE+F?

7

= — =t Rsign(w; — ;) Fucos(Bx) + Fysin( b))
S+

= —[AANA (11)

Where 6., indicates the direction of the reaction force F'
and sign(w,;— w;)=(w:—w,)/|w:— w,), * A,(A) is a (vX5s)
matrix, the elements of which are functions of y,w:, w;, K
and #.. Here, v denotes the number of generalized coordi-
nates of orientation. An equal and opposite torque— 7(A)
acts on member ; to oppose the rotation. The term »,= R sin
(¢) is called the radius of the welli-known friction circle.

Fig. 1 Revolute joint
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Fig. 2 Translational joint

2.2 Translational Joint

Figure 2 shows a translational joint that connects members
; and j. Members ; and j have the velocities V; and V;
respectively. The reaction force F, normal to the sliding
surfaces is also an element of Lagrange multipliers A

The friction force is obtained as follows ;

F)=—sign(V;— V)l Fnl
= —sign( V;— Vj)u%F n
= —[AD)]A (12)

Where A1) is a (u x s) matrix which is determined by g,
Vi, V; and F,. Here, ¥ denotes the number of generalized
coordinates of position and u+v=1#.

Inserting Egs. (11), (12) into Eq. (10) and rearranging, one
obtains the following matrix Eq. (13).

[ m 0 ¢I+A4,2) | ¥ ( Foo
0 J éF+ Ag(A) @’ =] n/—a")’]’w’] (13)
[ br Gn 0 A [ Y J

Note that Eq. (13) is different from Eq. (10), the Lagran-
ge multipliers A appearing only on the left-hand side of Eq.
(13) and this fact provides the basis of the numerical algorith-
m for a new solution for mechanisms including Coulomb
friction.

3. NUMERICAL ALGORITHM AND
SIMULATION RESULTS

3.1 Numerical Algorithm

(1) Conventional numerical algorithm

Equation (10) is the basic formulation for conventional
numerical algorithm. The solutions for #,¢” and A of the
preceding step are substituted into the right-hand side of Eq.
(10) and new values of #,®’ and A are calculated thereby.
This process is repeated until convergence for #,¢’ and A is
obtained.

This numerical algorithm can be expressed as follows ;

m 0 @7 ¥
0 J & @' =
by dr 0 A

n—=a& ] o+ Tr(Aiz1)
Y

Fr+ Fe(Aic)
(14)

Where ; is iteration number of computation.
(2) New numerical algorithm
New numerical algorithm is accomplished by taking advan-

tage of the Eq. (13). The values of #,¢” and A obtained at the
preceding step are substituted into the left-hand matrix of
Eq. (13) and new values of # ¢’ and A are calaulated. This
process is repeated until convergence is obtained.

This new numerical algorithm can be represented as the
following Eq. (15).

m 0 T+ AA) ¥ Fr
0 J ¢t AAr) oy =\ n—a' ] o
¢r ¢n’ 0 Ai Y

(15)

In practical numeric calculations, the values of #,¢” and A

are determined first by solving the Eq. (9) for frictionless

case and they are used as the starting values for iteration to
solve the Eqgs. (14) and (15).

3.2 Simulation Results

To examine the effectiveness and accuracy of this new
method, a slider-crank mechanism of Fig. 3 is chosen for its
application. This mechanism has three revolute joints of
radius of 2.5cm and one translational joint. The poston has
cross sectional area of 30cm? Pressure shown in Fig. 4 was
applied on the piston, its maximum value being 65.8Kg/cm?.
Parameters for this mechanism are given in Table 1.

The rotational speed of crankshaft was kept at 2000rpm
throughout the whole computations. The equations of both
(14) and (15) were solved for each 5 degree increment of the

Fig. 3 Slider-crank mechanism
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Table 1 Slider-crank mechanism parameters

Body Mass Moment of Length
No. (kg) inertia (kg cm?) (cm)
1 2.26 54.4 7.62
2 3.36 480.0 28.6
3 2.72 50.0 10.0
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Fig. 7 Interation number(xz=0.0 for translational joint and
©=0.3 for revolute joint, 2000rpm, convergence criteria :
'X,"'X.'Al( 107%)

crankshaft rotation untill the convergence reached within the
prescribed criteria. The iteration number and the time of
computation required for each 5 degree increment of the
crankshaft rotation were counted. The computation was
performed by employing LEQIF (a subroutine of IMSL) and
the computer was CYBER 835.

Figure 5 shows input torque calculated by both the conven-
tional and the new method. The coefficient of friction was
assumed to be 0.3 and the convergence criteria was set on
| X:— X:-1| <107 The conventional method required 775 itera-
tion times and 15.632 sec for total computation but the new
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Fig. 8 Iteration number(x=0.3 for translational and revolute
joint, 2000rpm, convergence criteria : | X;— X;-1|]<107%)
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Fig. 9 Iteration number(z=0.1 for translational and revolute
joint, 2000rpm, convergence criteria : | X, — X;..]<107%)

Table 2 Total computation iteration number

Coefficient Conventional New

of friction method method
0.05 402 75
Translatjonal 0.10 465 75
Joint 0.15 513 75
0.20 554 75
only 0.25 594 75
0.30 629 75
0.05 320 179
Revolute 0.10 346 186
joint 0.15 381 194
0.20 390 196
only 0.25 406 203
0.30 421 226
0.05 468 180
Translational 0.10 542 188
and revolute 0.15 612 195
0.20 664 200
joint 0.25 722 206
0.30 775 223

(unit : iteration number of computation)

method 223 iteration times and 6.616 sec only.

Figure 6 through Fig. 9 show the iteration number re-
quired to solve the equation of motion for each 5 degree
increment of the crankshaft rotation by both the conventional
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Table 3 Total computation time

Coefficient Conventional New

of friction method method
0.05 9.529 4.107
Translational (.10 10.612 4.103
joint 0.15 11.410 4.102
0.20 12.124 4.114
only 0.25 12.803 4.107
0.30 13.383 4,107
(.05 8.139 5.887
Revolute 0.10 8.574 5.998
joint 0.15 9.138 6.175
0.20 9.273 6.198
only 0.25 9.574 6.295
0.30 9.810 6.685
0.05 10.607 5.879
Translational 0.10 11.808 6.010
and revolute 0.15 12.963 6.124
0.20 13.824 6.209
joint 0.25 14.720 6.335
0.30 15.632 6.616

(unit : CP seconds execution time of CYBER 835)

and the new method for various conditions of friction. In the
case of Fig. 6 where the friction exists in translational con-
straint only, the new method reaches the convergence criteria
in one time of iteration through almost whole rotation of the
crankshaft, whereas the conventional method reaches in 10
and more times of iteration at some parts of rotation of
crankshaft.

Table 2 and Table 3 show the total computation iteration
number and the total computation time respectively required
by the conventional and the new method for various condi-
tions of friction.

Close examination of these tables reveals that this new
method saves considerably the computation time to solve the
equations of motion as compared with the conventional
method for same accuracy and that the higher the coefficient
of friction is, the more the computation time of the conven-
tional method is needed but the computation time of the new
method is nearly independent on the coefficient of friction.

4. CONCLUSIONS

Complete equations of motion and reaction forces are
established for dynamical analysis of multibody systems by
using Lagrangian formulation and applying the traditional

friction circle concepts to consider the effects of Coulomb
friction. A new solution method of the equations with its
numerical algorithm is presented and examined on its effec-
tiveness.

The results obtained are as follows:

(1) The new method saves considerably the computation
time to solve the equations of motion and reaction forces
compared with the conventional method for same accuracy.

(2) The higher the coefficient of friction is, the more the
computation time of the conventional method is needed, but
the computation time of the new method is nearly indepen-
dent on the coefficient of friction.

In the present paper the new solution method was applied
to a planar mechanism with simple constraints for demon-
stration, but its applications can be extended to systems with
more complex joints such as spherical joint and its effective-
ness may be displayed more remarkably in analysis of large
and complex mechanisms.
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